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A78ingle-Phase Active Device for Power Quality
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Abstract—A transformerless hybrid series active filter
is proposed to enhance the power quality in single-phase
systems with critical loads. This paper assists the energy
management and power quality issues related to electric
transportation and focuses on improving electric vehicle
load connection to the grid. The control strategy is de-
signed to prevent current harmonic distortions of nonlinear
loads to flow into the utility and corrects the power factor
of this later. While protecting sensitive loads from voltage
disturbances, sags, and swells initiated by the power sys-
tem, ridded of the series transformer, the configuration is
advantageous for an industrial implementation. This poly-
valent hybrid topology allowing the harmonic isolation and
compensation of voltage distortions could absorb or inject
the auxiliary power to the grid. Aside from practical analy-
sis, this paper also investigates on the influence of gains
and delays in the real-time controller stability. The simula-
tions and experimental results presented in this paper were
carried out on a 2-kVA laboratory prototype demonstrating
the effectiveness of the proposed topology.

Index Terms—Current harmonics, electric vehicle, hybrid
series active filter (HSeAF), power quality, real-time control.

|. INTRODUCTION

HE forecast of future Smart Grids associated with electric

vehicle charging stations has created a serious concern
on all aspects of power quality of the power system, while
widespread electric vehicle battery charging units [1], [2] have
detrimental effects on power distribution system harmonic volt-
age levels [3]. On the other hand, the growth of harmonics fed
from nonlinear loads like electric vehicle propulsion battery
chargers [4], [5], which indeed have detrimental impacts on the
power system and affect plant equipment, should be considered
in the development of modern grids. Likewise, the increased
rms and peak value of the distorted current waveforms increase
heating and losses and cause the failure of the electrical equip-

Manuscript received June 5, 2014; revised December 17, 2014;
accepted January 16, 2015. Date of publication February 11, 2015;
date of current version April 8, 2015. This work was supported in part
by the Natural Sciences and Engineering Research Council of Canada
(NSERC-CRSNG), in part by the Canada Research Chair in Electrical
Energy Conversion and Power Electronics (CRC-EECPE), and in part by
the Fonds de recherche du Québec—Nature et technologies (FRQNT).

A. Javadi is with the Electrical Engineering Department, Ecole de
Technologie Supérieure, University of Quebec, Montréal, QC H3C 1K3,
Canada (e-mail: Alireza.javadi.1 @ens.etsmtl.ca).

K. Al-Haddad is with the Canadian Research Chair in Electric Energy
Conversion and Power Electronics, Ecole de Technologie Supérieure,
Montréal, QC H3C1K3, Canada (e-mail: kamal.al-haddad @ etsmtl.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2015.2402639

ment. Such phenomenon effectively reduces system efficiency
and should have properly been addressed [6], [7].

Moreover, to protect the point of common coupling (PCC)
from voltage distortions, using a dynamic voltage restorer
(DVR) function is advised. A solution is to reduce the pollu-
tion of power electronics-based loads directly at their source.
Although several attempts are made for a specific case study,
a generic solution is to be explored. There exist two types of
active power devices to overcome the described power quality
issues. The first category are series active filters (SeAFs),
including hybrid-type ones. They were developed to eliminate
current harmonics produced by nonlinear load from the power
system. SeAFs are less scattered than the shunt type of active
filters [8], [9]. The advantage of the SeAF compared to the
shunt type is the inferior rating of the compensator versus
the load nominal rating [10]. However, the complexity of the
configuration and necessity of an isolation series transformer
had decelerated their industrial application in the distribution
system. The second category was developed in concern of
addressing voltage issues on sensitive loads. Commonly known
as DVR, they have a similar configuration as the SeAF. These
two categories are different from each other in their control
principle. This difference relies on the purpose of their appli-
cation in the system.

The hybrid series active filter (HSeAF) was proposed to
address the aforementioned issues with only one combination.
Hypothetically, they are capable to compensate current harmon-
ics, ensuring a power factor (PF) correction and eliminating
voltage distortions at the PCC [11], [12]. These properties make
it an appropriate candidate for power quality investments. The
three-phase SeAFs are well documented [13], [14], whereas
limited research works reported the single-phase applications
of SeAFs in the literature. In this paper, a single-phase trans-
formerless HSeAF is proposed and capable of cleaning up the
grid-side connection bus bar from current harmonics generated
by a nonlinear load [15]. With a smaller rating up to 10%, it
could easily replace the shunt active filter [16]. Furthermore, it
could restore a sinusoidal voltage at the load PCC.

The advantage of the proposed configuration is that non-
linear harmonic voltage and current producing loads could
be effectively compensated. The transformerless hybrid series
active filter (THSeAF) is an alternative option to conventional
power transferring converters in distributed generation systems
with high penetration of renewable energy sources, where
each phase can be controlled separately and could be operated
independently of other phases [17]. This paper shows that
the separation of a three-phase converter into single-phase H-
bridge converters has allowed the elimination of the costly
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Fig. 1. (a) Schematic of a single-phase smart load with the compen-
sator installation. (b) Electrical diagram of the THSeAF in a single-phase
utility.

isolation transformer and promotes industrial application for
filtering purposes. The setup has shown great ability to perform
requested compensating tasks for the correction of current and
voltage distortions, PF correction, and voltage restoration on
the load terminal [18].

This paper is organized as follows. The system architecture
is introduced in the following section. Then, the operation
principle of the proposed configuration is explained. The third
section is dedicated to the modeling and analysis of the control
algorithm implemented in this work. The dc voltage regulation
and its considerations are briefly explained, and the voltage
and current harmonic detection method is explicitly described.
To evaluate the configuration and the control approach, some
scenarios are simulated. Experimental results performed in the
laboratory are demonstrated to validate simulations. This paper
is summarized with a conclusion and appendix where further
mathematical developments are demonstrated.

II. SYSTEM ARCHITECTURE
A. System Configuration

The THSeAF shown in Fig. | is composed of an H-bridge
converter connected in series between the source and the load.
A shunt passive capacitor ensures a low impedance path for
current harmonics. A dc auxiliary source could be connected
to inject power during voltage sags. The dc-link energy storage

TABLE 1
CONFIGURATION PARAMETERS

Symbol Definition Value

Vg Line phase-to-neutral voltage 120 Vrms

f System frequency 60 Hz

Ryon-linear load  LLoad resistance 115Q

Lyon-linear load  LLoad inductance 20 mH

Pr Linear load power 1 kVA

PF Linear load power factor 46 %

Lf Switching ripple filter inductance 5SmH

cf Switching ripple filter capacitance 2 uF

Ts dSPACE Synchronous sampling time 40 us

Trwm PWM frequency 5 kHz

G Control gain for current harmonics 8Q

Vpcrer* VSI DC bus voltage of the THSeAF 70 V

Pl Proportional gain (K), Integral gain ~ 0.025(4%),
(K) 10 (10%)

* Adopted value for the experimental setup

Fig. 2. Terminal voltage and current waveforms of the 2-kVA single-
phase system without compensator. (a) Regular operation. (b) Grid’'s
voltage distortion (scales: 50 V/div for channel 1 and 10 A/div for
channel 2).

system is described in [19]. The system is implemented for a
rated power of 2200 VA. To ensure a fast transient response with
sufficient stability margins over a wide range of operation, the
controller is implemented on a dSPACE/dsp1103. The system
parameters are identified in Table I. A variable source of
120 Vrms is connected to a 1.1-kVA nonlinear load and a
998-VA linear load with a 0.46 PF. The THSeAF is connected
in series in order to inject the compensating voltage. On the
dc side of the compensator, an auxiliary dc-link energy storage
system is installed. Similar parameters are also applied for
practical implementation.

HSeAFs are often used to compensate distortions of the
current type of nonlinear loads. For instance, the distorted
current and voltage waveforms of the nonlinear system during
normal operation and when the source voltage became dis-
torted are depicted in Fig. 2. The THSeAF is bypassed, and
current harmonics flowed directly into the grid. As one can
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TABLE II
SINGLE-PHASE COMPARISON OF THE THSeAF TO PRIOR HSeAFs
.. Proposed

Definition THSeAF [21] [22] [12]

L 2 per 1 per 1 per
Injection Transformer Non

phase phase phase
# of semiconductor devices 4 8 4 4
# of DC link storage [+Aux. 1+Aux.
1 2
elements Pow. Pow.
AF rating to the load 1030% | 10-30% | 10-30% 1(3)-
power 30%
Size and weight, regarding
the transformer, power The .
switches, drive circuit, heat Lowest High Good Good
sinks, etc.
. . The .
Industrial production costs L High Low Low
owest
Power losses, including
switching, conducting, and Low Better Low Low
fixed losses
Reliability regarding
independent operation Good Low Good Good
capability
Harmonic correction of
Good Good Good Low

Current source load
Vo]tag; Harmonic . Good Better Good Good
correction at load terminals
Power factor correction Yes Yes Yes No
Power injection to the grid Yes No No Yes

perceive, even during normal operation, the current harmonics
(with a total harmonic distortion (THD) of 12%) distort the
PCC, resulting in a voltage THD of 3.2%. The behavior of
the system when the grid is highly polluted with 19.2% of
THD is also illustrated. The proposed configuration could be
solely connected to the grid with no need of a bulky and costly
series injection transformer, making this topology capable of
compensating source current harmonics and voltage distortion
at the PCC. Even if the number of switches has increased, the
transformerless configuration is more cost-effective than any
other series compensators, which generally uses a transformer
to inject the compensation voltage to the power grid. The
optimized passive filter is composed of Sth, 7th, and high-
pass filters. The passive filter should be adjusted for the system
upon load and government regulations. A comparison between
different existing configurations is given in Table II. It is aimed
to point out the advantages and disadvantages of the proposed
configuration over the conventional topologies.

To emphasize the comparison table fairly, the equivalent sin-
gle phase of each configuration is considered in the evaluation.
Financial production evaluation demonstrated a 45% reduction
in component costs and considerable reduction in assembly
terms as well.

B. Operation Principle

The SeAF represents a controlled voltage source (VSI). In or-
der to prevent current harmonics iy, to drift into the source, this

1
+ I3 R
Z
Iis I [iL L ¢
L

Fig. 3. THSeAF equivalent circuit for current harmonics.

series source should present low impedance for the fundamental
component and high impedance for all harmonics as shown
in Fig. 3. The principle of such modeling is well documented
in [20].

The use of a well-tuned passive filter is then mandatory to
perform the compensation of current issues and maintaining a
constant voltage free of distortions at the load terminals. The
behavior of the SeAF for a current control approach is evaluated
from the phasor’s equivalent circuit shown in Fig. 3. The
nonlinear load could be modeled by a resistance representing
the active power consumed and a current source generating
current harmonics. Accordingly, the impedance Zj, represents
the nonlinear load and the inductive load.

The SeAF operates as an ideal controlled voltage source
(Vcomp) having a gain (G) proportional to the current har-
monics (Ip,) flowing to the grid (V)

chomp = G'Ish —Vin. (D

This allows having individual equivalent circuit for the fun-
damental and harmonics

51+ Ven, Vi =V + Vi, ()

Vsource =

The source harmonic current could be evaluated

‘/sh = - Zs-Ish + ‘/comp + VLh (3)

Vin =Zr(In — Lp). “4)
Combining (3) and (4) leads to (5)
Vin

Iy, = ———. 5

"E G- 72 &)

If gain G is sufficiently large (G — o0), the source current
will become clean of any harmonics (Is, — 0). This will
help improve the voltage distortion at the grid side. In this
approach, the THSeAF behaves as high-impedance open circuit
for current harmonics, while the shunt high-pass filter tuned
at the system frequency creates a low-impedance path for all
harmonics and open circuit for the fundamental; it also helps
for PF correction.

[ll. MODELING AND CONTROL OF THE
SINGLE-PHASE THSeAF

A. Average and Small-Signal Modeling

Based on the average equivalent circuit of an inverter [23],
the small-signal model of the proposed configuration can be
obtained as in Fig. 4. Hereafter, d is the duty cycle of the upper
switch during a switching period, whereas © and i denote the
average values in a switching period of the voltage and current
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of the same leg. The mean converter output voltage and current .
are expressed by (6) and (7) as follows: Is Current Controller
vo = (2d— )i ©) =
Vo = - DC A
v vL

where the (2d — 1) equals to m, then

EDC = mgf . (7)

Calculating the Thévenin equivalent circuit of the harmonic
current source leads to the following assumption:

—Jth
Cupr-wn’ ®)

If the harmonic frequency is high enough, it is possible to
assume that there will be no voltage harmonics across the load.
The state-space small-signal ac model could be derived by a
linearized perturbation of the averaged model as follows:

op(jw) =

T = Az + Bu. 9)
Hence, we obtain
1 1
Tor 0 0 o & 0
d 5c§PF 0 0 CHIPF 0 —1/Cupr
E zS = —1/LS —1/LS —’I"C/LS —TC/LS 0
E'f *1/Lf 0 *”I‘C/Lf *T’C/Lf 0
iL 0 = 0 0 —Rp/Lg
Tos 00 0
UCHPF 0 0 0 Vs
X Ls + i 0 i X | Vbe (10)
iy 0z 0 Tp,
iL 0 0 —1/L;
Moreover, the output vector is
y=Cx+ Du (11)
or
T)Cf
17C0mp _ 1 0 Te Te 0 % UC;HPF
B 01 0 0 0 -5
12
i,
Us
0 0 O
+{0 0 _1]x Voe |- (12)
. Uh

By means of (10) and (12), the state-space representation of
the model is obtained as shown in Fig. 4.

The transfer function of the compensating voltage versus the
load voltage, Ty _¢1(s), and the source current, Ty (s), are
developed in the Appendix. Meanwhile, to control the active

Fig. 5. Control system scheme of the active part.

part independently, the derived transfer function should be
autonomous from the grid configuration. The transfer function
Ty, presents the relation between the output voltages of the
converter versus the duty cycle of the first leg converter’s upper
switch

Veom TchS +1
Ty = P — 13
v = T L rrecsr1 P
‘/vCOm
Tvm(S) = —comp = VDC’ . Tv(s) (14)

m

The further detailed derivation of steady-state transfer func-
tions is described in Section V.

A dc auxiliary source should be employed to maintain an
adequate supply on the load terminals. During the sag or swell
conditions, it should absorb or inject power to keep the voltage
magnitude at the load terminals within a specified margin. How-
ever, if the compensation of sags and swells is less imperative,
a capacitor could be deployed. Consequently, the dc-link volt-
age across the capacitor should be regulated as demonstrated
in Fig. 5.

B. Voltage and Current Harmonic Detection

The outer-loop controller is used where a capacitor replaces
the dc auxiliary source. This control strategy is well explained
in the previous section. The inner-loop control strategy is based
on an indirect control principle. A fast Fourier transformation
was used to extract the magnitude of the fundamental and
its phase degree from current harmonics. The control gain G
representing the impedance of the source for current harmonics
has a sufficient level to clean the grid from current harmonics
fed through the nonlinear load.

The second proportional integrator (PI) controller used in the
outer loop was to enhance the effectiveness of the controller
when regulating the dc bus. Thus, a more accurate and faster
transient response was achieved without compromising the
compensation behavior of the system. According to the theory,
the gain G should be kept in a suitable level, preventing the
harmonics from flowing into the grid [22], [24]. As previ-
ously discussed, for a more precise compensation of current
harmonics, the voltage harmonics should also be considered.
The compensating voltage for current harmonic compensation
is obtained from
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Fig. 6. Block diagram of THSeAF and PI controller. Fig. 7. Control diagram of the system with delay.
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Hereby, as voltage distortion at the load terminals is not N an
desired, the voltage sag and swell should also be investigated YComp 75
in the inner loop. The closed-loop equation (16) allows to €

indirectly maintain the voltage magnitude at the load side equal
to V; as a predefined value, within acceptable margins

Veomp_v = U1, — V7 sin(wgt). (16)

The entire control scheme for the THSeAF presented in
Fig. 5 was used and implemented in MATLAB/Simulink for
real-time simulations and the calculation of the compensating
voltage. The real-time toolbox of dSPACE was used for compi-
lation and execution on the dsp-1103 control board. The source
and load voltages, together with the source current, are consid-
ered as system input signals. According to Srianthumrong et al.
[25], an indirect control increases the stability of the system.

The source current harmonics are obtained by extracting the
fundamental component from the source current

*
Ucom_ref = Vcomp_v — Ucomp_i + UDC_ref (17)

where the vpc_res is the voltage required to maintain the dc
bus voltage constant

(18)

A phase-locked loop was used to obtain the reference angular
frequency (ws). Accordingly, the extracted current harmonic
contains a fundamental component synchronized with the
source voltage in order to correct the PF. This current represents
the reactive power of the load. The gain GG representing the
resistance for harmonics converts current into a relative voltage.
The generated reference voltage vcomp_; required to clean the
source current from harmonics is described in (15).

According to the presented detection algorithm, the compen-
sated reference voltage v¢y,,,,, o 1S calculated. Thereafter, the
reference signal is compared with the measured output voltage
and applied to a PI controller to generate the corresponding gate
signals as in Fig. 6.

UpC_ref(t) = Vo_pc - sin(wst).

C. Stability Analysis for Voltage and Current Harmonics

The stability of the configuration is mainly affected by the
introduced delay of a digital controller. This section studies the
impact of the delay first on the inclusive compensated system
according to works cited in the literature. Thereafter, its effects
on the active compensator is separated from the grid. Using
purely inductive source impedance (see Fig. 4) and Kirchhoff’s
law for harmonic frequency components, (19) is derived. The
delay time of the digital controller, large gain G, and the

Fig. 8. Closed-loop control diagram of the active filter with a constant
delay time 7.

high stiffness of the system seriously affect the stability of the
closed-loop controlled system
Veh — VCom - VLh
I sh (S) = LS Sp .

The compensating voltage including the delay time generated
by the THSeAF in the Laplace domain [see (1)] is

19)

VUComp — G- Iy, - et — Vin. (20)

Considering (19) and (20), the control diagram of the system
with delay is obtained as in Fig. 7.

For the sake of simplicity, the overall delay of the system
is assumed to be a constant value 7. Therefore, the open-loop
transfer function is obtained

G
G(s) = e,
() =7 5¢
From the Nyquist stability criterion, the stable operation of

the system must satisfy the following condition:
G < L
27
A system with a typical source inductance L of 250 pH and
a delay of 40 ps is considered stable according to (22) when the
gain G is smaller than 10€2. Experimental results confirm the
stability of the system presented in this paper. Moreover, the
influence of the delay on the control algorithm should also be
investigated. According to the transfer functions (13) and (14),
the control of the active part is affected by the delay introduce
by the digital controller. Thus, assuming an ideal switching
characteristic for the IGBTs, the closed-loop system for the
active part controller is shown in Fig. 8.
The open-loop transfer function in Fig. § turns to (23), where
the 7 is the delay time initiated by the digital controller

F(s)=Plg - Ty -€"°

_ (TchVDcs + VDC) . (Kps + Ki)e” 23)
o S~(LfoS2+?”COfS+1) '

21)

(22)

A P1 controller with system parameters described in Table I
demonstrates a smooth operation in the stable region. By means
of MATLAB, the behavior of the system’s transfer function
F(s) is traced in Fig. 9. The root locus and the Bode diagram of
the compensated open-loop system demonstrate a gain margin



3038

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 5, MAY 2015

X 105 Root Locus Editor for Open Loop 1 (OL1)
4r093 ' ‘

08

%

4 046024

0.97

0.99

» § |
< 861005 6e+005 4e+005 2e+00! A .o
2 0 : E
i= pmo
1o
27 ) ,
097 /
3 7
0.93 ; 5 v
-10 -8 -6 -4 -2 0 2
Real Axi
ea XIS )( 105
(@)

Phase (deg)

Magnitude (dB)

Open-Loop Bode Editor for Open Loop 1 (OL1)

r
7\
5

G.M.:: 8.06 dB
Freq: 3.17e+004 rad/s
Stable loop

x 10°

P.M.: 91.4 deg
Freq: 10 rad/s

10°

10°
Frequency (rad/s)

(b)

Fig. 9. Compensated open-loop system with delay time of 40 us. (a) Root locus diagram. (b) Bode diagram.

Fig. 10. Transformerless-HSeAF prototype used for experiments.

of 8.06 dB and a phase margin of 91°. Furthermore, for an
extra theoretical investigation, the influence of the delay on the
load voltage could also be evaluated with regard to the transfer
function Ty _1s(s) described in the Appendix.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

The proposed transformerless-HSeAF configuration was
simulated in MATLAB/Simulink using discrete time steps of
Ts =10 ps. A dSPACE/dsp1103 was used for the fast control
prototyping. To ensure an error-free and fast implementation,
the complete control loop was executed every 40 us. The
parameters are identified in Table L.

The combination of a single-phase nonlinear load and a
linear load with a total rated power of 2 kVA with a 0.74 lagging
PF is applied for laboratory experiments and simulations. For
experiments and simulations, a 2-kVA 120-Vrms 60-Hz vari-
able source is used. THSeAF connected in series to the system
compensates the current harmonics and voltage distortions. The
complete experimental system is demonstrated in Fig. 10.

A gain G = 8 () equivalent to 1.9 p.u. was used to control
current harmonics. As mentioned earlier, the capability of op-
eration with low dc voltage is considered as one of the main
advantages of the proposed configuration. For this experiment,
it is maintained at 130 Vdc. During a grid’s voltage distortion,
the compensator regulates the load voltage magnitude, compen-
sates current harmonics, and corrects the PF. The simulated
results of the THSeAF illustrated in Fig. 11 demonstrates
improvement in the source current THD. The load terminal
voltage Vi, THD is 4.3%, while the source voltage is highly
distorted (THD Vg = 25%).

The grid is cleaned of current harmonics with a unity power
factor (UPF) operation, and the THD is reduced to less than
1% in normal operation and less than 4% during grid pertur-
bation. While the series controlled source cleans the current
of harmonic components, the source current is forced to be in
phase with the source voltage. The series compensator has the
ability to slide the load voltage in order for the PF to reach unity.
Furthermore, the series compensator could control the power
flow between two PCCs.

Experimental results obtained in the laboratory corroborate
the successful operation of the THSeAF shown in simulations.
Figs. 12 and 13 show the compensator during steady state
operating with parameters described in Table 1. The source
current became sinusoidal, and the load voltage was regulated
atrated 120 Vrms. The source current is in phase with the utility
voltage, achieving a unity PF correction. The grid supplies
1.545 kVA at a PF equal to 0.99, while the load consumes
2 kVA with a PF of 0.75.

The compensator shows high efficiency in normal operation
where the total compensator losses including switching, induc-
tor resistances, and damping resistances are equal to 44 W
which is less than 2.5% of the system rated power. The power
flow and THD of measured values are depicted in Table III for
the case demonstrated in Fig. 12.

The experimented results illustrate a high fidelity with results
observed in simulation. Therefore, the system is subjected to
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Fig. 12. Experimental waveforms and harmonic spectrum under steady-
state sinusoidal grid voltage. (a) Source voltage vg [50 V/div], (b) source
current ig [10 A/div], (c) load terminal voltage v;, [50 V/div], (d) load
current iz, [10 A/div], (e) THSeAF voltage vcomp [20 V/div], (f) passive
filter current ipy [10 A/div], and (g) dc voltage vp ¢ [50 V/div].

sag and swells initiated from the utility source as shown in
the following figures. While cleaning the source current from
harmonics and correcting the PF, the compensator regulates
the load terminal voltage. Clarified in Section III, the auxiliary
source provides the necessary amount of power to maintain
the supply at the load terminals despite variation in the source
magnitude. The behavior of the proposed compensator during
dynamic load variation could be depicted from Fig. 14, where
the load is suddenly changed.

3
Ci  OEmEs (Timebase 0 m (Trigoer GG

10.0 Aldiy 50,0 Vidiv| 10.0 Aldiv| 200 msidiv| Slap [

0mAoffsetl  0.00 Voffset 0 mA offsel 500kS  25kS/s]Edge  Positive)

Fig. 13.  Waveforms during a variation of the source voltage. (a) Source
voltage vg [50 V/div], (b) source current ig [10 A/div], (c) load PCC
voltage vy, [50 V/div], and (d) load current 77, [10 A/div].

TABLE 1II
LABORATORY MEASURED VALUE AND POWER FLOW ANALYSIS

Load Grid Utility (Source)

Measures Voltage Current Voltage Current

(V). Vr (A), I, (V). Vs (A), Is
THD (%) 4.6 14.2 2.7 24
Fund. (rms) 119.9 16.7 121.2 12.8
Active power, P (W) 1499.7 1544 .4
Reactive power, Q (var) 1284.5 10.6
Power, S (VA) 1998.6 1545.2
Power Factor, PF 0.75 0.99
Compensator, THSeAF Scomp= + 44W - j1274var

The THSeAF reacts instantly to this variation and does not
interfere its operation functionality. Meanwhile, it is normal to
observe a slight transient voltage variation depending on the
momentum of the load disengagement or connection.

To evaluate the compensator during utility perturbation, the
power source became distorted as depicted in Fig. 15. The
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Fig. 14.  Waveforms during a dynamic load variation. (a) Source volt-
age vg [50 V/div], (b) source current ig [10 A/div], (c) load PCC voltage
vy, [50 V/div], and (d) load current iy, [10 A/div].
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Fig. 15. Experimental waveforms under utility voltage distortion and
prolonged sags. (a) Utility source voltage vg [50 V/div], (b) utility current
i [10 A/div], (c) load PCC voltage vy, [50 V/div], and (d) load current i,
[10 A/div].

source current became cleaned of the majority of harmonics
available in the load current and has a unity PF. The THSeAF
prevents existing perturbation on the grid’s voltage to propagate
on the load PCC. It protects sensitive loads and maintains a
sinusoidal and regulated voltage across the PCC of loads with a
3.9% of distortion. Moreover, in a worst possible scenario, the
already distorted utility’s voltage is subjected to voltage magni-
tude variation. Thus, the compensator should also inject power
to maintain the load PCC voltage regulated at the desired level.

During voltage sag and swell, the auxiliary source supplies
the difference of power to maintain the magnitude of the load
side voltage regulated. The harmonic content and THD factor
of the source utility and load PCC presented show dramatic
improvements in THD, while the load draws polluted cur-
rent waveforms. Furthermore, although the grid’s voltage is
polluted, the compensator in a hybrid approach regulates and
maintains a harmonic-free load voltage.

V. SUMMARY

In this paper, a transformerless HSeAF for power quality
improvement was developed and tested. The paper highlighted
the fact that, with the ever increase of nonlinear loads and
higher exigency of the consumer for a reliable supply, concrete
actions should be taken into consideration for future smart grids
in order to smoothly integrate electric car battery chargers to
the grid. The key novelty of the proposed solution is that the
proposed configuration could improve the power quality of
the system in a more general way by compensating a wide
range of harmonics current, even though it can be seen that
the THSeAF regulates and improves the PCC voltage. Con-
nected to a renewable auxiliary source, the topology is able
to counteract actively to the power flow in the system. This
essential capability is required to ensure a consistent supply
for critical loads. Behaving as high-harmonic impedance, it
cleans the power system and ensures a unity PF. The theoret-
ical modeling of the proposed configuration was investigated.
The proposed transformerless configuration was simulated and
experimentally validated. It was demonstrated that this active
compensator responds properly to source voltage variations by
providing a constant and distortion-free supply at load termi-
nals. Furthermore, it eliminates source harmonic currents and
improves the power quality of the grid without the usual bulky
and costly series transformer.

APPENDIX

For the sake of simplicity, the resistance r. of the switching
capacitor filter C'y is neglected, and the inductance Ly has an
ideal behavior.

A. Relationship of Load Voltage (V 1) and Grid
Voltage (V s)

- Vi(s) ZLoad B

" Vs(s)  Ls+ Zout + Zoad
B LfLLCfs3 + LfRLCf82 + Lis+ Ry,
A+B+C+D+E+F

A=L;L;LsC;Cruprss
B=L;LsRCiCpprs’
C = (LfLLCf + LfLLCHPF + LfLSCf

+ LpLsCrpr)s®
D =(L;R1Cy + LiR.Cypr + LsRi.Crpr)s®
E=(Ly+L,+Ls)s , F=Ry.

TVLS (8)
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B. Relation Between Load Voltage (V' ) and
Compensating Voltage (V comp)

Vcom Z,
TVCL (3) = (‘J/OL 2 = ZLOUtd
_ LfLLCHpFS3 + LfRLCHpF82 + LfS
N LfLLCfS3 + LfRLCf82 + Lps+ Ry, '

REFERENCES

[1] L. Jun-Young and C. Hyung-Jun, “6.6-kW onboard charger design using
DCM PFEC converter with harmonic modulation technique and two-stage
dc/dc converter,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1243—
1252, Mar. 2014.

[2] R. Seung-Hee, K. Dong-Hee, K. Min-Jung, K. Jong-Soo, and L. Byoung-
Kuk, “Adjustable frequency duty-cycle hybrid control strategy for full-
bridge series resonant converters in electric vehicle chargers,” IEEE
Trans. Ind. Electron., vol. 61, no. 10, pp. 5354-5362, Oct. 2014.

[3] P. T. Staats, W. M. Grady, A. Arapostathis, and R. S. Thallam, “A statis-
tical analysis of the effect of electric vehicle battery charging on distribu-
tion system harmonic voltages,” IEEE Trans. Power Del., vol. 13, no. 2,
pp. 640-646, Apr. 1998.

[4] A.Kuperman, U. Levy, J. Goren, A. Zafransky, and A. Savernin, “Battery
charger for electric vehicle traction battery switch station,” IEEE Trans.
Ind. Electron., vol. 60, no. 12, pp. 5391-5399, Dec. 2013.

[5] Z. Amjadi and S. S. Williamson, “Modeling, simulation, control of an
advanced Luo converter for plug-in hybrid electric vehicle energy-storage
system,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 64-75, Jan. 2011.

[6] H. Akagi and K. Isozaki, “A hybrid active filter for a three-phase 12-pulse
diode rectifier used as the front end of a medium-voltage motor drive,”
IEEE Trans. Power Del., vol. 27, no. 1, pp. 69-77, Jan. 2012.

[7]1 A.F.Zobaa, “Optimal multiobjective design of hybrid active power filters
considering a distorted environment,” /[EEE Trans. Ind. Electron., vol. 61,
no. 1, pp. 107-114, Jan. 2014.

[8] D. Sixing, L. Jinjun, and L. Jiliang, “Hybrid cascaded H-bridge con-
verter for harmonic current compensation,” IEEE Trans. Power Electron.,
vol. 28, no. 5, pp. 2170-2179, May 2013.

[9] M. S. Hamad, M. 1. Masoud, and B. W. Williams, “Medium-voltage
12-pulse converter: Output voltage harmonic compensation using a series
APE,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 43-52, Jan. 2014.

[10] J. Liu, S. Dai, Q. Chen, and K. Tao, “Modelling and industrial application
of series hybrid active power filter,” IET Power Electron., vol. 6, no. 8,
pp. 1707-1714, Sep. 2013.

[11] A. Javadi, H. Fortin Blanchette, and K. Al-Haddad, “An advanced control
algorithm for series hybrid active filter adopting UPQC behavior,” in Proc.
38th Annu. IEEE IECON, Montreal, QC, Canada, 2012, pp. 5318-5323.

[12] O. S. Senturk and A. M. Hava, “Performance enhancement of the single-
phase series active filter by employing the load voltage waveform re-
construction and line current sampling delay reduction methods,” IEEE
Trans. Power Electron., vol. 26, no. 8, pp. 2210-2220, Aug. 2011.

[13] A. Y. Goharrizi, S. H. Hosseini, M. Sabahi, and G. B. Gharehpetian,
“Three-phase HFL-DVR with independently controlled phases,” IEEE
Trans. Power Electron., vol. 27, no. 4, pp. 1706-1718, Apr. 2012.

[14] H. Abu-Rub, M. Malinowski, and K. Al-Haddad, Power Electronics
for Renewable Energy Systems, Transportation, Industrial Applications.
Chichester, U.K.: Wiley InterScience, 2014.

[15] S. Rahmani, K. Al-Haddad, and H. Kanaan, “A comparative study of
shunt hybrid and shunt active power filters for single-phase applications:
Simulation and experimental validation,” Math. Comput. Simul., vol. 71,
no. 4-6, pp. 345-359, Jun. 19, 2006.

[16] W.R. Nogueira Santos et al., “The transformerless single-phase universal
active power filter for harmonic and reactive power compensation,” [EEE
Trans. Power Electron., vol. 29, no. 7, pp. 3563-3572, Jul. 2014.

[17] A.Javadi, H. Fortin Blanchette, and K. Al-Haddad, “A novel transformer-
less hybrid series active filter,” in Proc. 38th Annu. IEEE IECON, Mon-
treal, QC, USA, 2012, pp. 5312-5317.

[18] H. Liqun, X. Jian, O. Hui, Z. Pengju, and Z. Kai, “High-performance indi-
rect current control scheme for railway traction four-quadrant converters,”
IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6645-6654, Dec. 2014.

[19] E. K. K. Sng, S. S. Choi, and D. M. Vilathgamuwa, “Analysis of se-
ries compensation and dc-link voltage controls of a transformerless self-
charging dynamic voltage restorer,” IEEE Trans. Power Del., vol. 19,
no. 3, pp. 1511-1518, Jul. 2004.

[20] H. Fujita and H. Akagi, “A practical approach to harmonic compensation
in power systems-series connection of passive and active filters,” IEEE
Trans. Ind. Appl., vol. 27, no. 6, pp. 1020-1025, Nov./Dec. 1991.

[21] A. Varschavsky, J. Dixon, M. Rotella, and L. Mora, “Cascaded nine-level
inverter for hybrid-series active power filter, using industrial controller,”
IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2761-2767, Aug. 2010.

[22] X. P. n. Salmero and S. P. n. Litra, “A control strategy for hybrid power
filter to compensate four-wires three-phase systems,” IEEE Trans. Power
Electron., vol. 25, no. 7, pp. 1923-1931, Jul. 2010.

[23] B. Singh, A. Chandra, and K. Al-Haddad, Power Quality Problems and
Mitigation Techniques. Chichester, U.K.: Wiley, 2015.

[24] P. Salmeron and S. P. Litran, “Improvement of the electric power quality
using series active and shunt passive filters,” IEEE Trans. Power Del.,
vol. 25, no. 2, pp. 1058-1067, Apr. 2010.

[25] S. Srianthumrong, H. Fujita, and H. Akagi, “Stability analysis of a series
active filter integrated with a double-series diode rectifier,” IEEE Trans.
Power Electron., vol. 17, no. 1, pp. 117-124, Jan. 2002.

Alireza Javadi (S’09) was born in Tehran, Iran,

in September 1983. He received the B.Sc. de-

gree in power electrical engineering from the

- K. N. Toosi University of Technology, Tehran,

| in 2007 and the M.Sc.A. degree in electrical

engineering from the Ecole Polytechnique de

Montréal, Montreal, QC, Canada, in 2009. He

4 is currently working toward the Ph.D. degree

- with the Canadian Research Chair in Electric

f‘;ﬂ Energy Conversion and Power Electronics at
Montreal, QC, Canada.

the Ecole de Technologie Supérieure (ETS),
His research interests encompass power electronics, harmonics and
reactive power control using hybrid active filters, power quality for smart
grids, renewable energy, real-time control, rapid control prototyping, and
power hardware-in-the-loop applications.
Mr. Javadi is an active member of the IEEE student branch at ETS
and the President of the IEEE-ETS. He is a Registered Engineer in the
Province of Quebec, Canada.

Kamal Al-Haddad (S'82-M'88-SM'92-F’07)
received the B.Sc.A. and M.Sc.A. degrees from
the University of Québec a Trois-Riviéres, Trois-
Rivieres, QC, Canada, in 1982 and 1984, re-
spectively, and the Ph.D. degree from the Insti-
tute National Polythechnique, Toulouse, France,
in 1988.

Since June 1990, he has been a Profes-
sor with the Electrical Engineering Department,
Ecole de Technologie Supérieure, Montreal,
QC, Canada, where he has been the holder of
the Canada Research Chair in Electric Energy Conversion and Power
Electronics since 2002. He has supervised more than 100 Ph.D. and
M.Sc.A. students working in the field of power electronics. He is a
consultant and has established a very solid link with many Canadian
industries working in the fields of power electronics, electric transporta-
tion, aeronautics, and telecommunications. He has coauthored more
than 500 Transactions and conference papers. His fields of interest
are in highly efficient static power converters, harmonics and reactive
power control using hybrid filters, switch-mode and resonant converters
including the modeling, control, and development of prototypes for
various industrial applications in electric traction, renewable energy,
power supplies for drives, telecommunication, etc.

Prof. Al-Haddad is a Fellow of the Canadian Academy of Engineering.
He is the IEEE Industrial Electronics Society (IES) President Elect
2014-2015, an Associate Editor of the IEEE TRANSACTIONS ON INDUS-
TRIAL INFORMATICS, an |IES Distinguished Lecturer, and a recipient of
the Dr. Ing. Eugene Mittelmann Achievement Award.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


